

# Verification and Calibration Procedures v2.07 AnaPico Signal Generators

APMS, APSIN, APULN Models

### **Document size:**

1 (one) title page 18 (eighteen) content pages

# Contents

| SIGNAL GENERATORS TEST AND CALIBRATION PROCEDURES | 2  |
|---------------------------------------------------|----|
| APMS                                              | 3  |
| APSINX010                                         | 7  |
| APSINXXG                                          | 10 |
| ADIII N                                           | 1/ |

# **Signal Generators Test and Calibration Procedures**

| Instrument Model: :   |                   |
|-----------------------|-------------------|
| Serial Number:        |                   |
| Installed Options::   |                   |
| Firmware Version::    |                   |
| Number of Channels: : | Date of measuring |
| Tested Channel::      | Performed by      |

This document describes the performance verification and calibration procedures that are performed to guarantee instrument performance according to specification.

Test procedures described in this document may be simplified and of restricted range compared with those that relate to the generally more comprehensive factory test facilities which are necessary to demonstrate complete compliance with the specifications.

When making tests to verify that the instrument meets the stated performance limits always allow for the uncertainty of the test equipment. The tests should be performed at least every 24 months.

# I. Measuring Conditions

| Temperature             | 23°C ± 5°C |
|-------------------------|------------|
| Relative Humidity       | 20 to 80 % |
| Instrument warm-up time | 1 hour     |

# II. List of parameters and tests to perform

| Parameter            | Test                        | Recommended Test Equipment     |
|----------------------|-----------------------------|--------------------------------|
| Internal Settings    | 1. Self-Test                | None                           |
| Frequency            | 2. Absolute accuracy        | Frequency counter              |
|                      | 3. Relative accuracy        | Frequency counter              |
|                      | 4. Maximum power            | Power meter like LB5940L       |
| Output power         | 5. Power level accuracy     | Power meter like LB5940L       |
|                      | 6. Power level linearity    | Power meter like LB5940L       |
|                      | 7. Low levels accuracy (PE) | Measuring receiver like FSMR26 |
| Spurious             | 8. Harmonic Spurious        | Spectrum analyzer like FSEK30  |
| Phase Noise          | 9. Single-sideband phase    | Signal source analyzer like    |
|                      | noise                       | APPH20G                        |
| Pulse Modulation     | 10. On/off ratio            | Spectrum analyzer like FSEK30  |
|                      | 11. Rise/fall times         | Real-time oscilloscope         |
| Amplitude Modulation | 12. Depth                   | Measuring receiver like FSMR26 |
|                      | 13. Distortion              | Measuring receiver like FSMR26 |
| Frequency Modulation | 14. Frequency Response      | Measuring receiver like FSMR26 |
|                      | 15. Distortion              | Measuring receiver like FSMR26 |

### III. Verification and Calibration Overview

Calibration involves verification and, if necessary, adjustment and re-verification of the instrument.

*Verification* is the process of testing to ensure the accuracy of the device.

*Adjustment* is the process of measuring and compensating the device performance to improve the measurement accuracy.

# IV. Performance Verification Tests

# **APMS**

The "Status" column of a test should be marked with "N/A" if a setting cannot be tested on the device under test (DUT). If the test is within tolerance, the "Status" should be marked with a  $\checkmark$ ; if the test is outside tolerance, it should be marked with a  $\overset{\checkmark}{\sim}$ .

When a value in the "Tolerance" column is followed by "(typ.)" it is a typically expected value. In that case the tolerance value is an indication of the performance that can be achieved, but the test cannot be marked as failed.

### 1. Self-Test

Use the Signal Generator GUI to perform a self-test of the device. (Controller -> Diagnostic Self Test).

| Return Codes          | Returned Code | Status |
|-----------------------|---------------|--------|
| 0 => pass             |               |        |
| -1 => Power Error     |               |        |
| -2 => Frequency Error |               |        |

# 2. Absolute Frequency Accuracy

Use a GPS conditioned Rubidium signal or similar as the timing reference of the frequency counter.

| Output Frequency (Hz) | Measured Frequency (Hz) | Tolerated Error (Hz) | Status |
|-----------------------|-------------------------|----------------------|--------|
| 100 000 000           |                         | < ± 100              |        |

### 3. Relative Frequency Accuracy

Use a common reference for the Device Under Test (DUT) and the frequency counter.

| Output Frequency (Hz) | Measured Frequency (Hz) | Tolerated Error (Hz) | Status |
|-----------------------|-------------------------|----------------------|--------|
| 500 000 000           |                         | < ± 1                |        |
| 5 000 000 000         |                         | < ± 1                |        |

### 4. Maximum Output Power

Depending on the installed option refer to the appropriate Max Power column (standard, PE3 or PE4).

| Output    | Measured Power | Max Power (dBm) |                  | Status        |  |
|-----------|----------------|-----------------|------------------|---------------|--|
| Frequency | (dBm)          | Standard        | PE4 (6, 12, 20G) | PE4 (33, 40G) |  |
| 10 MHz    |                | 20              | 18               | 19            |  |
| 1 GHz     |                | 25              | 20               | 19            |  |
| 6 GHz     |                | 25              | 20               | 19            |  |
| 12 GHz    |                | 23              | 18               | 19            |  |
| 20 GHz    |                | 20              | 15               | 19            |  |
| 26 GHz    |                | 18              | -                | 16            |  |
| 33 GHz    |                | 18              | -                | 15            |  |
| 40 GHz    |                | 18              | -                | 14            |  |

# 5. Power Level Accuracy

Frequency response at 0 dBm output power.

| Frequency | Measured Power (dBm) | Tolerated Error (dB) | Status |
|-----------|----------------------|----------------------|--------|
| 10 MHz    |                      | < ± 0.8              |        |
| 100 MHz   |                      | < ± 0.8              |        |
| 1 GHz     |                      | < ± 0.8              |        |
| 2 GHz     |                      | < ± 0.8              |        |
| 4 GHz     |                      | < ± 0.8              |        |
| 6 GHz     |                      | < ± 0.9              |        |
| 12 GHz    |                      | < ± 1.0              |        |
| 15 GHz    |                      | < ± 1.0              |        |
| 20 GHz    |                      | < ± 1.0              |        |
| 26 GHz    |                      | < ± 1.2              |        |
| 33 GHz    |                      | < ± 1.2              |        |
| 40 GHz    | <u> </u>             | < ± 1.2              |        |

# 6. Power Level Linearity

Level Linearity at different frequencies.

| Frequency (GHz) | Output Power (dBm) | Measured Power<br>(dBm) | Tolerated Error (dB) | Status |
|-----------------|--------------------|-------------------------|----------------------|--------|
| 1               | 15                 |                         | < ± 0.8              |        |
| 1               | 10                 |                         | < ± 0.8              |        |
| 1               | 5                  |                         | < ± 0.8              |        |
| 1               | 0                  |                         | < ± 0.8              |        |
| 1               | -5                 |                         | < ± 0.8              |        |
| 1               | -10                |                         | < ± 0.8              |        |
| 1               | -15                |                         | < ± 0.8              |        |
| 10              | 15                 |                         | < ± 0.8              |        |
| 10              | 10                 |                         | < ± 0.8              |        |
| 10              | 5                  |                         | < ± 0.8              |        |
| 10              | 0                  |                         | < ± 0.8              |        |
| 10              | -5                 |                         | < ± 0.8              |        |
| 10              | -10                |                         | < ± 0.8              |        |
| 10              | -15                |                         | < ± 0.8              |        |

# 7. Low Level Accuracy (option PE4)

Level Accuracy at -50 dBm output power.

| Frequency | Measured Power (dBm) | Tolerated Error (dB) | Status |
|-----------|----------------------|----------------------|--------|
| 10 MHz    |                      | < ± 1.2              |        |
| 100 MHz   |                      | < ± 1.2              |        |
| 1 GHz     |                      | < ± 1.2              |        |
| 2 GHz     |                      | < ± 1.2              |        |
| 4 GHz     |                      | < ± 1.2              |        |
| 6 GHz     |                      | < ± 1.3              |        |
| 12 GHz    |                      | < ± 1.6              |        |
| 15 GHz    |                      | < ± 1.6              |        |
| 20 GHz    |                      | < ± 1.6              |        |
| 26 GHz    |                      | < ± 1.7              |        |
| 33 GHz    |                      | < ± 1.7              |        |
| 40 GHz    |                      | < ± 1.7              |        |

# 8. Harmonic Distortion

Output power set to 5 dBm.

| Frequency | Test Frequency | Measured Relative<br>Power (dBc) | Tolerance (dBc) | Status |
|-----------|----------------|----------------------------------|-----------------|--------|
| 100 MHz   | 50 MHz         | Total (und)                      | < -70           |        |
| 100 MHz   | 200 MHz        |                                  | < -20           |        |
| 100 MHz   | 300 MHz        |                                  | < -20           |        |
| 1 GHz     | 500 MHz        |                                  | < -70           |        |
| 1 GHz     | 2 GHz          |                                  | < -30           |        |
| 1 GHz     | 3 GHz          |                                  | < -30           |        |
| 6 GHz     | 3 GHz          |                                  | < -65           |        |
| 6 GHz     | 12 GHz         |                                  | < -25           |        |
| 6 GHz     | 18 GHz         |                                  | < -25           |        |
| 12 GHz    | 6 GHz          |                                  | < -60           |        |
| 12 GHz    | 24 GHz         |                                  | < -25           |        |
| 12 GHz    | 36 GHz         |                                  | < -25           |        |
| 18 GHz    | 9 GHz          |                                  | < -60           |        |
| 18 GHz    | 36 GHz         |                                  | < -25           |        |
| 26 GHz    | 13 GHz         |                                  | < -55 (typ.)    |        |
| 33 GHz    | 16.5 GHz       |                                  | < -55 (typ.)    |        |
| 40 GHz    | 20 GHz         |                                  | < -55 (typ.)    |        |

# 9. Single-sideband Phase Noise

Output power set to maximum, Automatic Level Control (ALC) off.

| Frequency | Frequency | Measured Phase | Tolerance | (dBc/Hz)         | Status |
|-----------|-----------|----------------|-----------|------------------|--------|
|           | Offset    | Noise (dBc/Hz) | Standard  | <b>Option LN</b> |        |
|           | 10 Hz     |                | -82       | -96              |        |
|           | 100 Hz    |                | -109      | -106             |        |
| 1 GHz     | 1 kHz     |                | -126      | -126             |        |
|           | 10 kHz    |                | -138      | -138             |        |
|           | 100 kHz   |                | -145      | -145             |        |
|           | 10 Hz     |                | -70       | -81              |        |
|           | 100 Hz    |                | -101      | -97              |        |
| 4 GHz     | 1 kHz     |                | -112      | -112             |        |
|           | 10 kHz    |                | -124      | -124             |        |
|           | 100 kHz   |                | -133      | -133             |        |
|           | 10 Hz     |                | -63       | -73              |        |
|           | 100 Hz    |                | -93       | -90              |        |
| 10 GHz    | 1 kHz     |                | -107      | -107             |        |
|           | 10 kHz    |                | -117      | -117             |        |
|           | 100 kHz   |                | -124      | -124             |        |

# 10. Pulse Modulation On/Off Ratio

Output power set to 10 dBm. If available, the pulse modulation mode must be set to high on/off ratio (RAT).

| Frequency | On/Off ratio (dBc) | Tolerance (dBc) | Status |
|-----------|--------------------|-----------------|--------|
| 1 GHz     |                    | > 80            |        |
| 6 GHz     |                    | > 80            |        |
| 12 GHz    |                    | > 70            |        |
| 18 GHz    |                    | > 65            |        |
| 26 GHz    |                    | > 75 (typ.)     |        |
| 33 GHz    |                    | > 75 (typ.)     |        |
| 40 GHz    |                    | > 75 (typ.)     |        |

# 11. AM Depth (option MOD only)

Modulation rate 1 kHz, output power 0 dBm.

| Frequency | Depth | Measured Depth | Tolerance (%) | Status |
|-----------|-------|----------------|---------------|--------|
| 1 GHz     | 30%   |                | < 4           |        |
| 1 GHz     | 80%   |                | < 4           |        |

# 12. AM Distortion (option MOD only)

Modulation rate 1 kHz, output power 0 dBm.

| Carrier Frequency | Depth | <b>Measured Distortion</b> | Tolerance (%) | Status |
|-------------------|-------|----------------------------|---------------|--------|
| 1 GHz             | 30%   |                            | < 1           |        |
| 1 GHz             | 80%   |                            | < 1           |        |

# 13. FM Frequency Response (option MOD only)

Modulation rate 1 kHz, output power 0 dBm.

| Carrier Frequency | Deviation (kHz) | Measured Deviation | Tolerance (%) | Status |
|-------------------|-----------------|--------------------|---------------|--------|
| 1 GHz             | 1               |                    | < 2           |        |
| 1 GHz             | 10              |                    | < 2           |        |
| 1 GHz             | 100             |                    | < 2           |        |

# 14. FM Distortion (option MOD only)

| Carrier Frequency | Deviation (kHz) | Measured distortion | Tolerance (%) | Status |
|-------------------|-----------------|---------------------|---------------|--------|
| 1 GHz             | 10              |                     | 1 (typ.)      |        |

# **APSINX010**

The "Status" column of a test should be marked with "N/A" if a setting cannot be tested on the device under test (DUT). If the test is within tolerance, the "Status" should be marked with a  $\checkmark$ ; if the test is outside tolerance, it should be marked with a  $\stackrel{\checkmark}{\checkmark}$ .

When a value in the "Tolerance" column is followed by "(typ.)" it is a typically expected value. In that case the tolerance value is an indication of the performance that can be achieved, but the test cannot be marked as failed.

### 1. Self-Test

Use the Signal Generator GUI to perform a self-test of the device. (Controller -> Diagnostic Self Test).

| Return Codes          | Returned Code | Status |
|-----------------------|---------------|--------|
| 0 => pass             |               |        |
| -1 => Power Error     |               |        |
| -2 => Frequency Error |               |        |

# 2. Absolute Frequency Accuracy

Use a GPS conditioned Rubidium signal or similar as the timing reference of the frequency counter.

| Output Frequency (Hz) | Measured Frequency (Hz) | <b>Tolerated Error (Hz)</b> | Status |  |
|-----------------------|-------------------------|-----------------------------|--------|--|
| 100 000 000           |                         | < ± 100                     |        |  |

# 3. Relative Frequency Accuracy

Use a common reference for the Device Under Test (DUT) and the frequency counter.

| Output Frequency (Hz) | Measured Frequency (Hz) | Tolerated Error (Hz) | Status |
|-----------------------|-------------------------|----------------------|--------|
| 500 000 000           |                         | < ± 1                |        |
| 2 000 000 000         |                         | < ± 1                |        |

# 4. Maximum Output Power

Depending on the installed option refer to the appropriate Max Power column (standard, PE3 or PE4).

| Output Frequency | Measured Power (dBm) | Max Power (dBm) |     | Status |
|------------------|----------------------|-----------------|-----|--------|
|                  |                      | Standard        | PE3 |        |
| 10 MHz           |                      | 18              | 17  |        |
| 1 GHz            |                      | 18              | 17  |        |
| 2 GHz            |                      | 18              | 17  |        |
| 4 GHz            |                      | 18              | 17  |        |
| 6 GHz            |                      | 18              | 17  |        |

# 5. Power Level Accuracy

Frequency response at 0 dBm output power.

| Frequency | Measured Power (dBm) | Tolerated Error (dB) | Status |
|-----------|----------------------|----------------------|--------|
| 10 MHz    |                      | < ± 0.8              |        |
| 100 MHz   |                      | < ± 0.8              |        |
| 1 GHz     |                      | < ± 0.8              |        |
| 2 GHz     |                      | < ± 0.8              |        |
| 4 GHz     |                      | < ± 0.8              |        |
| 6 GHz     |                      | < ± 0.8              |        |

# 6. Power Level Linearity

Level Linearity at 1 GHz output frequency.

| Frequency (GHz) | Output Power (dBm) | Measured Power<br>(dBm) | Tolerated Error (dB) | Status |
|-----------------|--------------------|-------------------------|----------------------|--------|
| 1               | 10                 | (wasse,                 | < ± 0.8              |        |
| 1               | 5                  |                         | < ± 0.8              |        |
| 1               | 0                  |                         | < ± 0.8              |        |
| 1               | -5                 |                         | < ± 0.8              |        |
| 1               | -10                |                         | < ± 0.8              |        |
| 1               | -15                |                         | < ± 0.8              |        |
| 1               | -20                |                         | < ± 0.8              |        |

# 7. Low Level Accuracy (option PE3)

Level Accuracy at -50 dBm output power.

| Frequency | Measured Power (dBm) | Tolerated Error (dB) | Status |
|-----------|----------------------|----------------------|--------|
| 10 MHz    |                      | < ± 1.3              |        |
| 100 MHz   |                      | < ± 1.3              |        |
| 1 GHz     |                      | < ± 1.3              |        |
| 2 GHz     |                      | < ± 1.3              |        |
| 4 GHz     |                      | < ± 1.3              |        |
| 6 GHz     |                      | < ± 1.3              |        |

# 8. Harmonic Distortion

Output power set to 10 dBm.

| Frequency | Test Frequency | Measured Relative | Tolerance (dBc) | Status |
|-----------|----------------|-------------------|-----------------|--------|
|           |                | Power (dBc)       |                 |        |
| 100 MHz   | 50 MHz         |                   | < -70           |        |
| 100 MHz   | 200 MHz        |                   | < -30           |        |
| 100 MHz   | 300 MHz        |                   | < -30           |        |
| 1 GHz     | 500 MHz        |                   | < -70           |        |
| 1 GHz     | 2 GHz          |                   | < -30           |        |
| 1 GHz     | 3 GHz          |                   | < -30           |        |
| 6 GHz     | 3 GHz          |                   | < -70           |        |
| 6 GHz     | 12 GHz         |                   | < -30           |        |
| 6 GHz     | 18 GHz         |                   | < -30           |        |

# 9. Single-sideband Phase Noise

Output power set to maximum, Automatic Level Control (ALC) off.

| Frequency | Frequency<br>Offset | Measured Phase Noise<br>(dBc/Hz) | Tolerance (dBc/Hz) | Status |
|-----------|---------------------|----------------------------------|--------------------|--------|
|           | 10 Hz               |                                  | -75                |        |
|           | 100 Hz              |                                  | -100               |        |
| 1 GHz     | 1 kHz               |                                  | -112               |        |
|           | 10 kHz              |                                  | -120               |        |
|           | 100 kHz             |                                  | -126               |        |
|           | 10 Hz               |                                  | -60                |        |
|           | 100 Hz              |                                  | -86                |        |
| 4 GHz     | 1 kHz               |                                  | -100               |        |
|           | 10 kHz              |                                  | -108               |        |
|           | 100 kHz             |                                  | -114               |        |

# 10. Pulse Modulation On/Off Ratio

Output power set to 10 dBm. If available, the pulse modulation mode must be set to high on/off ratio (RAT).

| Frequency | On/Off ratio (dBc) | Tolerance (dBc) | Status |
|-----------|--------------------|-----------------|--------|
| 1 GHz     |                    | > 70 (typ.)     |        |
| 6 GHz     |                    | > 70 (typ.)     |        |

# 11. AM Depth (option MOD only)

Modulation rate 1 kHz, output power 0 dBm.

| Frequency | Depth | Measured Depth | Tolerance (%) | Status |
|-----------|-------|----------------|---------------|--------|
| 1 GHz     | 30%   |                | < 4           |        |
| 1 GHz     | 80%   |                | < 4           |        |

# 12. AM Distortion

Modulation rate 1 kHz, output power 0 dBm.

| Carrier Frequency | Depth | Measured Distortion | Tolerance (%) | Status |
|-------------------|-------|---------------------|---------------|--------|
| 1 GHz             | 30%   |                     | < 1           |        |
| 1 GHz             | 80%   |                     | < 1           |        |

# 13. FM Frequency Response

Modulation rate 1 kHz, output power 0 dBm.

| Carrier Frequency | Deviation (kHz) | Measured Deviation | Tolerance (%) | Status |
|-------------------|-----------------|--------------------|---------------|--------|
| 1 GHz             | 1               |                    | < 2           |        |
| 1 GHz             | 10              |                    | < 2           |        |
| 1 GHz             | 100             |                    | < 2           |        |

# 14. FM Distortion

| Carrier Frequency | Deviation (kHz) | Measured distortion | Tolerance (%) | Status |
|-------------------|-----------------|---------------------|---------------|--------|
| 1 GHz             | 10              |                     | 1 (typ.)      |        |

# **APSINXXG**

The "Status" column of a test should be marked with "N/A" if a setting cannot be tested on the device under test (DUT). If the test is within tolerance, the "Status" should be marked with a  $\checkmark$ ; if the test is outside tolerance, it should be marked with a  $\times$ .

When a value in the "Tolerance" column is followed by "(typ.)" it is a typically expected value. In that case the tolerance value is an indication of the performance that can be achieved, but the test cannot be marked as failed.

### 1. Self-Test

Use the Signal Generator GUI to perform a self-test of the device. (Controller -> Diagnostic Self Test).

| Return Codes          | Returned Code | Status |
|-----------------------|---------------|--------|
| 0 => pass             |               |        |
| -1 => Power Error     |               |        |
| -2 => Frequency Error |               |        |

### 2. Absolute Frequency Accuracy

Use a GPS conditioned Rubidium signal or similar as the timing reference of the frequency counter.

| Output Frequency (Hz) | Measured Frequency (Hz) | Tolerated Error (Hz) | Status |
|-----------------------|-------------------------|----------------------|--------|
| 100 000 000           |                         | < ± 100              |        |

# 3. Relative Frequency Accuracy

Use a common reference for the Device Under Test (DUT) and the frequency counter.

| Ou | tput Frequency (Hz) | Measured Frequency (Hz) | Tolerated Error (Hz) | Status |
|----|---------------------|-------------------------|----------------------|--------|
|    | 500 000 000         |                         | < ± 1                |        |
|    | 5 000 000 000       |                         | < ± 1                |        |

# 4. Maximum Output Power

Depending on the installed option refer to the appropriate Max Power column (standard, PE3 or PE4).

| Output    | Measured    |          | Max Power (dBm) |    |          |  |
|-----------|-------------|----------|-----------------|----|----------|--|
| Frequency | Power (dBm) | Standard | PE3             | HP | PE3 + HP |  |
| 10 MHz    |             | 15       | 13              | 18 | 18       |  |
| 1 GHz     |             | 15       | 13              | 25 | 22       |  |
| 6 GHz     |             | 15       | 13              | 23 | 22       |  |
| 12 GHz    |             | 15       | 13              | 23 | 20       |  |
| 20 GHz    |             | 15       | 13              | 20 | 18       |  |
| 24 GHz    |             | 15       | 13              | 20 | 15       |  |

# 5. Power Level Accuracy

Frequency response at 0 dBm output power.

| Frequency | Measured Power (dBm) | Tolerated Error (dB) | Status |
|-----------|----------------------|----------------------|--------|
| 10 MHz    |                      | < ± 1.0              |        |
| 100 MHz   |                      | < ± 1.0              |        |
| 1 GHz     |                      | < ± 1.0              |        |
| 2 GHz     |                      | < ± 1.0              |        |
| 4 GHz     |                      | < ± 1.0              |        |
| 6 GHz     |                      | < ± 1.0              |        |
| 12 GHz    |                      | < ± 1.0              |        |
| 15 GHz    |                      | < ± 1.0              |        |
| 20 GHz    |                      | < ± 1.0              |        |

# 6. Power Level Linearity

Level Linearity at different frequencies.

| Frequency (GHz) | Output Power (dBm) | Measured Power (dBm) | Tolerated Error (dB) | Status |
|-----------------|--------------------|----------------------|----------------------|--------|
| 1               | 15                 | ,                    | < ± 1                |        |
| 1               | 10                 |                      | < ± 1                |        |
| 1               | 5                  |                      | < ± 1                |        |
| 1               | 0                  |                      | < ± 1                |        |
| 1               | -5                 |                      | < ± 1                |        |
| 1               | -10                |                      | < ± 1                |        |
| 1               | -15                |                      | < ± 1                |        |
| 10              | 15                 |                      | < ± 1                |        |
| 10              | 10                 |                      | < ± 1                |        |
| 10              | 5                  |                      | < ± 1                |        |
| 10              | 0                  |                      | < ± 1                |        |
| 10              | -5                 |                      | < ± 1                |        |
| 10              | -10                |                      | < ± 1                |        |
| 10              | -15                |                      | < ± 1                |        |

# 7. Low Level Accuracy (option PE3)

Level Accuracy at -50 dBm output power.

| Frequency | Measured Power (dBm) | Tolerated Error (dB) | Status |
|-----------|----------------------|----------------------|--------|
| 10 MHz    |                      | < ± 1.5              |        |
| 100 MHz   |                      | < ± 1.5              |        |
| 1 GHz     |                      | < ± 1.5              |        |
| 2 GHz     |                      | < ± 1.5              |        |
| 4 GHz     |                      | < ± 1.5              |        |
| 6 GHz     |                      | < ± 1.5              |        |
| 12 GHz    |                      | < ± 1.5              |        |
| 15 GHz    |                      | < ± 1.5              |        |
| 20 GHz    |                      | < ± 1.5              |        |

# 8. Harmonic Spurious

Output power set to 10 dBm.

| Frequency | Test Frequency | Measured Relative<br>Power (dBc) | Tolerance (dBc) | Status |
|-----------|----------------|----------------------------------|-----------------|--------|
| 100 MHz   | 50 MHz         | 1 ower (abe)                     | < -65           |        |
| 100 MHz   | 200 MHz        |                                  | < -30           |        |
| 100 MHz   | 300 MHz        |                                  | < -30           |        |
| 1 GHz     | 500 MHz        |                                  | < -65           |        |
| 1 GHz     | 2 GHz          |                                  | < -30           |        |
| 1 GHz     | 3 GHz          |                                  | < -30           |        |
| 6 GHz     | 3 GHz          |                                  | < -60           |        |
| 6 GHz     | 12 GHz         |                                  | < -30           |        |
| 6 GHz     | 18 GHz         |                                  | < -30           |        |
| 12 GHz    | 6 GHz          |                                  | < -60           |        |
| 12 GHz    | 24 GHz         |                                  | < -30           |        |
| 12 GHz    | 36 GHz         |                                  | < -30           |        |
| 18 GHz    | 9 GHz          |                                  | < -60           |        |
| 18 GHz    | 36 GHz         |                                  | < -30           |        |
| 20 GHz    | 10 GHz         |                                  | < -40           |        |
| 20 GHz    | 40 GHz         |                                  | < -30           |        |

# 9. Single-sideband Phase Noise

Output power set to maximum, Automatic Level Control (ALC) off.

| Frequency | Frequency<br>Offset | Measured Phase<br>Noise (dBc/Hz) | Tolerance (dBc/Hz) | Status |
|-----------|---------------------|----------------------------------|--------------------|--------|
|           | 10 Hz               |                                  | -72                |        |
|           | 100 Hz              |                                  | -95                |        |
| 1 GHz     | 1 kHz               |                                  | -112               |        |
|           | 10 kHz              |                                  | -123               |        |
|           | 100 kHz             |                                  | -126               |        |
|           | 10 Hz               |                                  | -55                |        |
|           | 100 Hz              |                                  | -85                |        |
| 5 GHz     | 1 kHz               |                                  | -101               |        |
|           | 10 kHz              |                                  | -111               |        |
|           | 100 kHz             |                                  | -113               |        |
|           | 10 Hz               |                                  | -51                |        |
|           | 100 Hz              |                                  | -76                |        |
| 10 GHz    | 1 kHz               |                                  | -92                |        |
|           | 10 kHz              |                                  | -103               |        |
|           | 100 kHz             |                                  | -106               |        |

# 10. Pulse Modulation On/Off Ratio

Output power set to 10 dBm. If available, the pulse modulation mode must be set to high on/off ratio (RAT).

| Frequency | On/Off ratio (dBc) | Tolerance (dBc) | Status |
|-----------|--------------------|-----------------|--------|
| 1 GHz     |                    | > 70 (typ.)     |        |
| 6 GHz     |                    | > 70 (typ.)     |        |
| 12 GHz    |                    | > 70 (typ.)     |        |
| 20 GHz    |                    | > 70 (typ.)     |        |

# 11. AM Depth (option MOD only)

Modulation rate 1 kHz, output power 0 dBm.

| Frequency | Depth | Measured Depth | Tolerance (%) | Status |
|-----------|-------|----------------|---------------|--------|
| 1 GHz     | 30%   |                | < 4           |        |
| 1 GHz     | 80%   |                | < 4           |        |

### 12. AM Distortion

Modulation rate 1 kHz, output power 0 dBm.

| Carrier Frequency | Depth | <b>Measured Distortion</b> | Tolerance (%) | Status |
|-------------------|-------|----------------------------|---------------|--------|
| 1 GHz             | 30%   |                            | < 1           |        |
| 1 GHz             | 80%   |                            | < 1           |        |

# 13. FM Frequency Response

Modulation rate 1 kHz, output power 0 dBm.

| Carrier Frequency | Deviation (kHz) | Measured Deviation | Tolerance (%) | Status |
|-------------------|-----------------|--------------------|---------------|--------|
| 1 GHz             | 1               |                    | < 2           |        |
| 1 GHz             | 10              |                    | < 2           |        |
| 1 GHz             | 100             |                    | < 2           |        |

### 14. FM Distortion

| Carrier Frequency | Deviation (kHz) | Measured distortion | Tolerance (%) | Status |
|-------------------|-----------------|---------------------|---------------|--------|
| 1 GHz             | 10              |                     | 1 (typ.)      |        |

# **APULN**

The "Status" column of a test should be marked with "N/A" if a setting cannot be tested on the device under test (DUT). If the test is within tolerance, the "Status" should be marked with a  $\checkmark$ ; if the test is outside tolerance, it should be marked with a  $\stackrel{\checkmark}{\checkmark}$ .

When a value in the "Tolerance" column is followed by "(typ.)" it is a typically expected value. In that case the tolerance value is an indication of the performance that can be achieved, but the test cannot be marked as failed.

### 1. Self-Test

Use the Signal Generator GUI to perform a self-test of the device. (Controller -> Diagnostic Self Test).

| Return Codes          | Returned Code | Status |
|-----------------------|---------------|--------|
| 0 => pass             |               |        |
| -1 => Power Error     |               |        |
| -2 => Frequency Error |               |        |

# 2. Absolute Frequency Accuracy

Use a GPS conditioned Rubidium signal or similar as the timing reference of the frequency counter.

| Output Frequency (Hz) | Measured Frequency (Hz) | Tolerated Error (Hz) | Status |
|-----------------------|-------------------------|----------------------|--------|
| 100 000 000           |                         | < ± 100              |        |

# 3. Relative Frequency Accuracy

Use a common reference for the Device Under Test (DUT) and the frequency counter.

| Output Frequency (Hz) | Measured Frequency (Hz) | Tolerated Error (Hz) | Status |
|-----------------------|-------------------------|----------------------|--------|
| 500 000 000           |                         | < ± 1                |        |
| 5 000 000 000         |                         | < ± 1                |        |

# 4. Maximum Output Power

Depending on the installed option refer to the appropriate Max Power column (standard, PE3 or PE4).

| Output    | Measured    | Max Power (dBm) |     |      | Status     |  |
|-----------|-------------|-----------------|-----|------|------------|--|
| Frequency | Power (dBm) | Standard        | PE4 | FILT | PE4 + FILT |  |
| 10 MHz    |             | 18              | 18  | 18   | 15         |  |
| 1 GHz     |             | 24              | 20  | 15   | 12         |  |
| 6 GHz     |             | 23              | 20  | 15   | 12         |  |
| 12 GHz    |             | 20              | 15  | 15   | 12         |  |
| 20 GHz    |             | 20              | 15  | 13   | 10         |  |
| 26 GHz    |             | 18              | 15  | 13   | 10         |  |
| 40 GHz    |             | 18              | 15  | 11   | 8          |  |

# 5. Power Level Accuracy

Frequency response at 0 dBm output power.

| Frequency | Measured Power (dBm) | Tolerated Error (dB) | Status |
|-----------|----------------------|----------------------|--------|
| 10 MHz    |                      | < ± 0.8              |        |
| 100 MHz   |                      | < ± 0.8              |        |
| 1 GHz     |                      | < ± 0.8              |        |
| 2 GHz     |                      | < ± 0.8              |        |
| 4 GHz     |                      | < ± 0.8              |        |
| 6 GHz     |                      | < ± 0.9              |        |
| 12 GHz    |                      | < ± 1.0              |        |
| 15 GHz    |                      | < ± 1.0              |        |
| 20 GHz    |                      | < ± 1.0              |        |
| 26 GHz    |                      | < ± 1.2              |        |
| 33 GHz    |                      | < ± 1.2              |        |
| 40 GHz    | <u> </u>             | < ± 1.2              |        |

# 6. Power Level Linearity

Level Linearity at different frequencies.

| Frequency (GHz) | Output Power (dBm) | Measured Power<br>(dBm) | Tolerated Error (dB) | Status |
|-----------------|--------------------|-------------------------|----------------------|--------|
| 1               | 15                 |                         | < ± 0.8              |        |
| 1               | 10                 |                         | < ± 0.8              |        |
| 1               | 5                  |                         | < ± 0.8              |        |
| 1               | 0                  |                         | < ± 0.8              |        |
| 1               | -5                 |                         | < ± 0.8              |        |
| 1               | -10                |                         | < ± 0.8              |        |
| 1               | -15                |                         | < ± 0.8              |        |
| 10              | 15                 |                         | < ± 0.8              |        |
| 10              | 10                 |                         | < ± 0.8              |        |
| 10              | 5                  |                         | < ± 0.8              |        |
| 10              | 0                  |                         | < ± 0.8              |        |
| 10              | -5                 |                         | < ± 0.8              |        |
| 10              | -10                |                         | < ± 0.8              |        |
| 10              | -15                |                         | < ± 0.8              |        |

# 7. Low Level Accuracy (option PE)

Level Accuracy at -50 dBm output power.

| Frequency | Measured Power (dBm) | Tolerated Error (dB) | Status |
|-----------|----------------------|----------------------|--------|
| 10 MHz    |                      | < ± 1.2              |        |
| 100 MHz   |                      | < ± 1.2              |        |
| 1 GHz     |                      | < ± 1.2              |        |
| 2 GHz     |                      | < ± 1.2              |        |
| 4 GHz     |                      | < ± 1.2              |        |
| 6 GHz     |                      | < ± 1.3              |        |
| 12 GHz    |                      | < ± 1.6              |        |
| 15 GHz    |                      | < ± 1.6              |        |
| 20 GHz    |                      | < ± 1.6              |        |
| 26 GHz    |                      | < ± 2.5              |        |
| 33 GHz    |                      | < ± 2.5              |        |
| 40 GHz    |                      | < ± 2.5              |        |

# 8. Harmonic Spurious

Output power set to 10 dBm.

| Frequency | Test      | Measured Relative | Tolerance    | e (dBc)      | Status |
|-----------|-----------|-------------------|--------------|--------------|--------|
|           | Frequency | Power (dBc)       | Standard     | Filt         |        |
| 100 MHz   | 50 MHz    |                   | < -75 (typ.) | < -75 (typ.) |        |
| 100 MHz   | 200 MHz   |                   | < -30        | < -30        |        |
| 100 MHz   | 300 MHz   |                   | < -30        | < -30        |        |
| 1 GHz     | 500 MHz   |                   | < -75 (typ.) | < -75 (typ.) |        |
| 1 GHz     | 2 GHz     |                   | < -30        | -50          |        |
| 1 GHz     | 3 GHz     |                   | < -30        | -50          |        |
| 6 GHz     | 3 GHz     |                   | < -70 (typ.) | < -70 (typ.) |        |
| 6 GHz     | 12 GHz    |                   | < -25        | -50          |        |
| 6 GHz     | 18 GHz    |                   | < -25        | -50          |        |
| 12 GHz    | 6 GHz     |                   | < -70 (typ.) | < -70 (typ.) |        |
| 12 GHz    | 24 GHz    |                   | < -25        | -50          |        |
| 12 GHz    | 36 GHz    |                   | < -25        | -50          |        |
| 18 GHz    | 9 GHz     |                   | < -70 (typ.) | < -70 (typ.) |        |
| 18 GHz    | 36 GHz    |                   | < -25        | -50          |        |
| 26 GHz    | 13 GHz    |                   | < -55 (typ.) | < -65 (typ.) |        |
| 33 GHz    | 16.5 GHz  |                   | < -55 (typ.) | < -65 (typ.) |        |
| 40 GHz    | 20 GHz    |                   | < -55 (typ.) | < -65 (typ.) |        |

# 9. Single-sideband Phase Noise

Output power set to maximum, Automatic Level Control (ALC) off.

| Frequency | Frequency | Measured Phase | Tolerance (dBc/Hz) |           | Status |
|-----------|-----------|----------------|--------------------|-----------|--------|
|           | Offset    | Noise (dBc/Hz) | Standard           | Option LN |        |
|           | 10 Hz     |                | -102               | -115      |        |
|           | 100 Hz    |                | -132               | -127      |        |
| 100 MHz   | 1 kHz     |                | -144               | -144      |        |
|           | 10 kHz    |                | -148               | -148      |        |
|           | 100 kHz   |                | -150               | -150      |        |
|           | 10 Hz     |                | -83                | -96       |        |
|           | 100 Hz    |                | -114               | -114      |        |
| 1 GHz     | 1 kHz     |                | -126               | -126      |        |
|           | 10 kHz    |                | -138               | -138      |        |
|           | 100 kHz   |                | -145               | -145      |        |
|           | 10 Hz     |                | -70                | -83       |        |
|           | 100 Hz    |                | -102               | -102      |        |
| 4 GHz     | 1 kHz     |                | -112               | -112      |        |
|           | 10 kHz    |                | -125               | -125      |        |
|           | 100 kHz   |                | -133               | -133      |        |
|           | 10 Hz     |                | -63                | -76       |        |
|           | 100 Hz    |                | -96                | -96       |        |
| 10 GHz    | 1 kHz     |                | -107               | -107      |        |
|           | 10 kHz    |                | -117               | -117      |        |
|           | 100 kHz   |                | -125               | -125      |        |

# 10. Pulse Modulation On/Off Ratio

Output power set to 10 dBm. If available, the pulse modulation mode must be set to high on/off ratio (RAT).

| Frequency | On/Off ratio (dBc) | Tolerance (dBc) | Status |
|-----------|--------------------|-----------------|--------|
| 1 GHz     |                    | > 70            |        |
| 6 GHz     |                    | > 70            |        |
| 12 GHz    |                    | > 70            |        |
| 20 GHz    |                    | > 65            |        |
| 26 GHz    |                    | > 65            |        |
| 33 GHz    |                    | > 65            |        |
| 40 GHz    |                    | > 65            |        |

# 11. AM Depth (option MOD only)

Modulation rate 1 kHz, output power 0 dBm.

| Frequency | Depth | Measured Depth | Tolerance (%) | Status |
|-----------|-------|----------------|---------------|--------|
| 1 GHz     | 30%   |                | < 4           |        |
| 1 GHz     | 80%   |                | < 4           |        |

### 12. AM Distortion

Modulation rate 1 kHz, output power 0 dBm.

| Carrier Frequency | Depth | Measured Distortion | Tolerance (%) | Status |
|-------------------|-------|---------------------|---------------|--------|
| 1 GHz             | 30%   |                     | < 1           |        |
| 1 GHz             | 80%   |                     | < 1           |        |

# 13. FM Frequency Response

Modulation rate 1 kHz, output power 0 dBm.

| Carrier Frequency | Deviation (kHz) | Measured Deviation | Tolerance (%) | Status |
|-------------------|-----------------|--------------------|---------------|--------|
| 1 GHz             | 1               |                    | < 2           |        |
| 1 GHz             | 10              |                    | < 2           |        |
| 1 GHz             | 100             |                    | < 2           |        |

# 14. FM Distortion

| Carrier Freque | ency Deviat | ion (kHz) | Measured distortion | Tolerance (%) | Status |
|----------------|-------------|-----------|---------------------|---------------|--------|
| 1 GHz          |             | 10        |                     | 1 (typ.)      |        |

# **Document History**

| Version | Date       | Author | Notes                                                                         |
|---------|------------|--------|-------------------------------------------------------------------------------|
| 2.00    | 12.05.2020 | МН     | Creation                                                                      |
| 2.01    | 15.06.2020 | МН     | Added sections for APMS, APSINX010, APSINXXG and APULN                        |
| 2.02    | 25.06.2020 | МН     | Updated test values                                                           |
| 2.03    | 21.07.2020 | МН     | Removed rise / fall time from list of tests                                   |
| 2.04    | 22.12.2020 | МН     | Updated values for APULN                                                      |
| 2.05    | 05.01.2021 | МН     | Updated PhN values for APULN                                                  |
| 2.06    | 08.01.2021 | МН     | Updated values for APULN max power, phase noise for APMS, APSINXXG, APSINx010 |
| 2.07    | 28.09.2021 | МН     | Updated Maxpower values for APMS @ >=33 GHz                                   |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         |            |        |                                                                               |
|         | I.         | l      | <u> </u>                                                                      |

# **AnaPico of Switzerland**

Europa-Strasse 9 8152 Glattbrugg Switzerland Phone +41 44 440 00 50 Email support@anapico.com

www.anapico.com